AP/MALDI-MS complete characterization of the proteolytic fragments produced by the interaction of insulin degrading enzyme with bovine insulin.

نویسندگان

  • Giuseppe Grasso
  • Enrico Rizzarelli
  • Giuseppe Spoto
چکیده

The prominent role that insulin degrading enzyme (IDE) has in the clearance of insulin as well as of other molecules such as amyloid-beta has recently drawn much interest in the scientific community toward this protease. In order to give an insight into the manner of interaction of IDE with its substrates, several papers have focused on the structure of the IDE/insulin complex. In this scenario, although the cleavage sites involved in the interaction of insulin with IDE are known, a convenient experimental method that is able to identify in a complete and unambiguous way, all the peptide fragments generated by such interaction has yet to be found. MS-based experiments have often represented to be invaluable tools for the assessment of the cleavage sites, but the reported MS-spectra always show a partial coverage of all the peptide fragments generated by the enzyme interaction, lacking a complete characterization. In this work, we report a new experimental procedure by which an unambiguous as well as complete assignment of all the peptide fragments generated by the interaction of insulin with IDE is described. Atmospheric pressure/matrix-assisted laser desorption ionization (AP/MALDI) mass spectra are reported and the data recorded, together with the introduction of a reduction/alkylation step, allows us to fully characterize the cleavage sites of the bovine insulin interacting with IDE. Different experimental conditions are screened and some insights into the IDE/insulin system regarding preference of the cleavage and its dependence on particular experimental conditions used are also given. Investigation on the tendency that different insulin fragments have toward aggregation is also carried out. Good reproducibility, global and unambiguous assignment, low time-consuming experimental procedure, and requirements of enzyme in small amounts are some of the advantages of the proposed AP/MALDI based approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High sequence-coverage detection of proteolytic peptides using a bis(terpyridine)ruthenium(II) complex.

The use of a bis(terpyridine)ruthenium(ii) complex for peptide labeling (Ru-CO labeling) supplied high intensity peaks in mass spectrometry (MS) analysis that overcame the contribution of protonation or sodiated adduction to peptides. Ru-CO-labeled insulin A- and B-chains were detected simultaneously in comparable peak abundance by matrix-assisted laser desorption/ionization time-of-flight mass...

متن کامل

Effect of Passage Number and Culture Time on the Expression and Activity of Insulin-Degrading Enzyme in Caco-2 Cells

Background: Insulin-degrading enzyme (IDE) is a conserved zinc metallopeptidase. Here, we have evaluated the effect of passage number and culture time on IDE expression and activity in colorectal adenocarcinoma cell line (Caco-2). Methods: Caco-2 cells were cultured with different passage ranges of 5-15, 25-35, 52-63 for 48, 72, and 120 hours. Subsequently, IDE expression and enzyme activity we...

متن کامل

Insulin-degrading enzyme: embarking on amyloid destruction.

Several human disorders are caused by or associated with the deposition of protein aggregates known as amyloid fibrils. Despite the lack of sequence homology among amyloidogenic proteins, all amyloid fibrils share a common morphology, are insoluble under physiological conditions and are resistant to proteolytic degradation. Because amyloidogenic proteins are being produced continuously, eukaryo...

متن کامل

Redox Regulation of Insulin Degradation by Insulin-Degrading Enzyme

Insulin-degrading enzyme (IDE) is a thiol sensitive peptidase that degrades insulin and amyloid β, and has been linked to type 2 diabetes mellitus and Alzheimer's disease. We examined the thiol sensitivity of IDE using S-nitrosoglutathione, reduced glutathione, and oxidized glutathione to distinguish the effects of nitric oxide from that of the redox state. The in vitro activity of IDE was stud...

متن کامل

Insulin-like growth factor binding protein-4 proteolytic degradation in ovine preovulatory follicles: studies of underlying mechanisms.

The regulation of insulin-like growth factor binding protein (IGFBP)-4 proteolytic degradation by insulin-like growth factors (IGFs) has been largely studied in vitro, but not in vivo. The aim of this study was to investigate the involvement of IGFs, IGFBP-2, IGFBP-3, and IGFBP-3 proteolytic fragments in the regulation of IGFBP-4 proteolytic activity in ovine ovarian follicles. Follicular fluid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of mass spectrometry : JMS

دوره 42 12  شماره 

صفحات  -

تاریخ انتشار 2007